您好!欢迎访问【上海炫纵实业有限公司】官方网站! 诚信为本 服务至上 精进卓越 亲和共生
全国诚信镍基合金供应商诚信为本 服务至上 精进卓越 亲和共生
全国咨询热线: 021-57620528
热门关键词:   钴基合金     奥氏体不锈钢     易切削钢     工具钢   齿轮钢  
联系我们

【 微信扫码咨询 】

180-1633-9698

180-1633-9698

您的位置: 首页 > 新闻中心 > 行业新闻

2021你不了解的镍基合金知识大全

厂家:上海炫纵实业 浏览量:发布时间:2021-10-19 21:00:47

信息摘要:

2021你不了解的镍基合金知识大全以镍为基加入其他元素组成的合金就叫镍合金。镍具有良好的力学、物理和化学性能,添加适宜的元素可提高它的抗氧化性、耐蚀性、高温强度和改善某些物理性能。镍合金可作为电子管用材料、精密合金(磁性合金、精密电阻合金、电热合金等)、镍基高温合金以及镍基耐蚀合金和形状记忆合金等。在能源开

2021你不了解的镍基合金知识大全

以镍为基加入其他元素组成的合金就叫镍合金。镍具有良好的力学、物理和化学性能,添加适宜的元素可提高它的抗氧化性、耐蚀性、高温强度和改善某些物理性能。镍合金可作为电子管用材料、精密合金(磁性合金、精密电阻合金、电热合金等)、镍基高温合金以及镍基耐蚀合金和形状记忆合金等。在能源开发、化工、电子、航海、航空和航天等部门中,镍合金都有广泛用途。

2021你不了解的镍基合金知识大全

镍能与铜,铁,锰,铬,硅,镁组成多种合金。其中镍铜合金是著名的蒙乃尔合金,它强度高,塑性好,在750度以下的大气中,化学性能稳定,广泛用于电气工业,真空管,化学工业,医疗器材和航海船舶工业等方面。

一、镍基合金定义

镍基合金一般以Ni含量超过30wt%之合金称之,常见产品之Ni含量都超过50wt%, 由于具有超群的高温机械强度与耐蚀性质,与铁基和钴基合金合称为超合金(Superalloy),一般是应用在540℃以上的高温环境,并依其使用场合,选用不同合金设计,多用于特殊耐蚀环境、高温腐蚀环境、需具备高温机械强度之设备。常应用于航天、能源、石化工业或特殊电子/光电等领域。

你不了解的镍基合金知识大全

应用领域

产品要求特性

产品用途

航天工业

极高温下维持良好机械强度

飞机引擎、燃气涡轮机、引擎阀门

能源工业

良好之抗高温硫化、高温氧化特性

熔炉零件、隔热层、热处理产业、石油与天然气产业

石化工业

耐水溶液(酸、碱、氯离子)腐蚀

海水淡化厂、石化输送管线

电子/光电一般工业

一般耐蚀或耐高温程度较低之环境

电池壳件、导线架,计算机监视器网罩

二、起源与发展

镍基合金是30年代后期开始研制的,英国于1941年首先生产出镍基合金 Nimonic75(Ni-20Cr-0.4Ti);为了提高潜变强度又添加Al,研制出Nimonic 80(Ni-20Cr- 2.5Ti-1.3Al);而美国于40年代中期,俄罗斯于40年代后期,中国于50年代中期也先后开发出镍基合金。镍基合金的发展包括两个方面,即合金成分的改良和生产技术的革新。

如50年代初,真空熔炼技术的发展,为炼制含高Al和Ti 的镍基合金创造了条件,而带动了合金强度与使用温度的大幅提高。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用精密铸造技术,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的方向性结晶和单晶高温合金,以及粉末冶金高温合金。

为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高Cr镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700 提高1,100℃,平均每年提高10℃左右。时至今日,镍基合金之使用温度已可超过1,100℃,从前述最初成份简单之Nimonic75 合金,到近期发展出之MA6000 合金,在1,100℃时拉伸强度可达2,220MPa、屈服强度为192MPa;其1,100℃/137MPa条件下之持久强度约达1,000小时,可用于航空发动机叶片。

三、镍基合金之特色

镍基合金是超合金中应用最广、强度最高的材料。超合金之名称即源自于材料特色。

包括:

(1)性能超优异:高温下可维持高强度,且具有优异的抗潜变、抗疲劳等机械性质,以及抗氧化和耐蚀特性与良好的塑性和 焊接性。

(2)合金添加超繁杂:镍基合金常添加十种以上之合金元素,用以增进不同环境之耐蚀性;以及固溶强化或析出强化等作用。

(3)工作环境超恶劣:镍基合金被广泛用于各种严苛之使用条件,如航天飞行引擎燃气 室的高温高压部份、核能、石油、海洋工业之结构件,耐蚀管线等。

四、镍基合金之微组织

镍基合金的晶体结构主要为高温稳定之 面心立方体(FCC)沃斯田铁结构,为了提高其耐热性质,添加了大量的合金元素,这些元素会形成各种二次相,提升了镍基合金之高温强度。二次相的种类包含各种形式之 MC、M23C6、M6C、M7C3碳化物,主要分布在晶界,以及如 γ' 或 γ'' 等结 构上为整合性(Coherent)之有序(Ordering)介金属化合物。γ'与 γ'' 相之其化学组成大致是Ni3(Al, Ti) 或 Ni3Nb,此类有序相在高温下非常稳定,经由它们的强化可得到优良的潜变破坏强度。 典型镍基合金之微组织如图1:

图1 典型镍基合金之微组织

随着合金化程度的提高,其显微组织的变化有如下趋势: γ'相数量逐渐增多,尺寸逐渐增大,并由球状变成立方体,同一合金中出现尺寸和形态不相同的γ'相。此外,在铸造合金中还出现在凝固过程中形成的γ+γ'共晶,晶界析出不连续的颗粒状碳化物并被γ'相薄膜所包围,这些微组织的变化改善了合金的性能。此外,现代镍基合金的化学成份十分复杂,合金的饱和度很高,因此要求对每个合金元素 (尤其是主要强化元素)的含量严加控制,否则会在使用过程中容易析出其他有害的介金属相,如σ、Laves相等,将损害合金的强度和韧性。

五、合金元素之作用与牌号

镍基合金是高温合金中应用最广、强度最高的一类合金。其中添加较大量的Ni 为沃斯田铁相稳定元素,使得镍基合金维持 FCC结构而可以溶解较多其它合金元素,还能保持较好的组织稳定性与材料的塑性;而 Cr、Mo和Al则具有抗氧化和抗腐蚀作用,并具有一定的强化作用。镍基合金的强化依元素作用方式可分为:

(1)固溶强化元素,如W、Mo、Co、Cr和V等,藉由此类原子半径与基材的不同,在Ni-Fe之基地造成局部晶格应变来强化材料;

(2)析出强化元素则如Al、Ti、Nb和Ta等,可以形成整合性有序的A3B型金属间化合物,如Ni3(Al,Ti)等强化相(γ’),使合金得到有效的强化,获得比铁基高温合金和钴基合金更高的高温强度;

(3)晶界强化元素,如B、Zr、Mg和稀土元素等,可加强合金之高温性质。一般镍基合金的牌号由其所开发厂家来命名,如Ni-Cu合金又称为Monel合金,常见如Monel 400、K-500等。Ni-Cr合金一般称为 Inconel合金,也就是常见之镍基耐热合金,主要在氧化性介质条件下使用 ,常见如 Inconel 600、625等。若是Inconel合金中加入较高量的Fe来取代Ni,则为Incoloy合金,其耐高温程度不如镍基析出硬化型合金,但价格便宜,可用于喷射引擎里温度较低部份的组件及石化厂反应器等,如Incoloy 800H、825等。若于Inconel与Incoloy中加入析出强化元素,如Ti、Al、Nb等,则成为析出硬化型(铁)镍基合金,可于高温下仍保有良好的机械强度与抗蚀性,多用于喷射引擎的组件,如 Inconel 718 、Incoloy A-286 等。而 Ni-Cr-Mo(-W)(-Cu) 合金则称为哈氏耐蚀合(Hastelloy),其中Ni-Cr-Mo主要在还原性介质腐蚀的条件下使用。Hastelloy的代表牌号如C-276、C-2000等。镍基合金之主要牌号与添加元素之对照可参考图2:

图2

六、镍基合金之性能

1.高温(瞬时)强度

镍基合金室温下就具有较高的拉伸强度 (TS=1,200-1,600;YS= 900-1,300 MPa),且兼具良好的延展性,此一趋势可维持至高达图3

图3 镍基合金中强硬之析出相与具延性之基地所形成之复合概念

包含利用前述以离子与共价键结,在常温下具有高熔点、高强度之γ'或γ''等析出相,搭配滑移系统多而具延展性之沃斯田铁相基地,以复合材料之概念得到兼具强度塑性之优异机械性质,使得镍基合金之应用温度成为金属材料中最高的图4:

图4 各类工程材料依机械强度所划分之强度-应用温度地图

2.潜变强度

潜变为材料在高温(T/Tm>0.5)恒荷载作用下,缓慢地産生塑性变形的现象,为材料合金由于具有最佳的抗高温潜变能力,而被广泛的使用在各种高温环境,作为承力件应用。潜变的发生如图5:

图5 潜变变形之三个阶段,以及温度对潜变影响之强度-应用温度示意图

可分为三个阶段, 在初步潜变(Primary Creep)阶段,变形速率相对较大,但是随着应变的增加发生加工硬化而减慢。当变形速率达到某一个最小值并接近常数,此时称为第二阶段潜变,或稳态阶段潜变 (Secondary or Steady-StateCreep),这是由于加工硬化和动态回复达到平衡的结果,在工程材料设计上所要求之潜变应变率就是指这一阶段的应变率。在第三阶段(Tertiary Creep),由于颈缩现象,应变率随着应变增大而呈指数性的增长,最后达到破坏。

应力和应变率的关系随潜变机制的不同而有所不同,一般说来,温度的升高或是应力的增加都会增加稳态潜变的变形速率并缩短潜变寿命。潜变之机制可分为(1)差排潜变:受到高温的帮助,差排可能沿滑移面发生滑移,进而发生变形。(2)扩散潜变:由原子移动造成,沿晶粒散的称为Nabarro-Herring Creep,在高温时为主要机制。沿晶界扩散的叫做Coble Creep,在低温时 为主要机制。因此晶粒越小越容易发生扩散潜变。(3)晶界滑移:因高温时晶界较弱,材料易沿晶界产生滑移,造成沿晶裂缝。故高温时晶粒越小越容易产生晶界滑移潜变及沿晶裂缝。金属的潜变变形常为差排潜变与晶界滑移的交互作用,镍基合金由于具有介金属相的析出,可大幅抑制差排潜变,而晶界上析出之碳化物则可帮助抵抗晶界滑移造成之潜变现象,使得镍基合金相对其他金属材料具有较优异之抗潜变性质图6:

图6 不同合金材料之潜变性质比较

此外,从传统的铸造方式改以单向性凝固长柱状晶,抵抗高温潜变的性质会上升,若进一步长成单晶时,抗潜变能力更大幅提高,故镍基合金也发展出方向性共晶凝固、单晶铸造、粉末冶金等特殊技术,进一步增进了镍基合金抵抗高温潜变的能力。

以上就是2021你不了解的镍基合金知识大全的内容介绍,希望对您有所帮助,更多关于镍基合金知识,敬请关注炫纵实业.

镍基合金知识 镍基合金大全 镍合金
【2021你不了解的镍基合金知识大全】本文链接: https://www.shhxuanzong.com/news/hangye/353.html
在线客服
联系方式

热线电话

180-1633-9698

上班时间

周一到周五

公司电话

180-1633-9698

二维码
线